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First-principles density-functional calculations of the electronic structure, energy band gaps �Eg�, and strain-
induced band gap changes in moderate-gap single-walled �n ,0� carbon nanotubes �SWNTs� are presented. It is
confirmed that �n ,0� SWNTs fall into two classes depending upon n mod 3=1 or 2. Eg is always lower for
“mod 1” than for “mod 2” SWNTs of similar diameter. For n�10, strong curvature effects dominate Eg; from
n=10 to 17, the Eg oscillations, amplified due to �-� mixing, decrease and can be explained very well with a
tight-binding model which includes trigonal warping. Under strain, the two families of semiconducting
SWNTs are distinguished by equal and opposite energy shifts for these gaps. For �10,0� and �20,0� tubes, the
potential surface and band gap changes are explored up to approximately �6% strain or compression. For each
strain value, full internal geometry relaxation is allowed. The calculated band gap changes are
��115�10� meV per 1% strain, positive for the mod 1 and negative for the mod 2 family, about 10% larger
than the tight-binding result of �97 meV and twice as large as the shift predicted from a tight-binding model
that includes internal sublattice relaxation.
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I. INTRODUCTION

A single-walled carbon nanotube �SWNT� is a one-
dimensional �1D� nanostructured material, which has been
the focal point of research over the past decade for intriguing
applications ranging from nanoelectronics to biological sen-
sors. The geometry of the SWNT is described by a chiral

vector �C� � :C� =na� +mb� , denoted by �n ,m� that connects the
two crystallographically equivalent sites on the graphene
sheet. Soon after their discovery and characterization,1 the
potential of this tubular structure was realized by theoretical
work,2–6 which showed that SWNTs can be categorized into
three types: metallic, small gap, and moderate-gap semicon-
ducting based on their chirality. It was proposed that a
SWNT would exhibit metallic character if �n−m� /3 is an
integer and a moderate-gap semiconductor in all other cases.
Furthermore, these early tight-binding calculations also pre-
dicted that the gap Eg in a semiconducting SWNT is in-
versely proportional to its diameter �d� �Ref. 7� and mono-
tonically decreases with the increase in diameter of the tube.
This unique dependence of electronic properties of SWNTs
on their diameter and chirality spawned a great interest in
this material. This was later confirmed by the pioneering
experimental work that measured electronic properties of
SWNT.8–11 These experiments probed the explicit depen-
dence of chirality and diameter on the electronic properties
and confirmed the earlier theoretical predictions with accu-
racy of �0.05 nm in measured diameter and �0.3 eV in
measured Eg.

However, over the years, conflicting relationships have
been reported on the exact dependence of Eg of the SWNTs
on their diameter. Previous conclusions about monotonic 1 /d
dependence law have been challenged. For smaller n the
trigonal shape of the equienergy lines around the K point of
the graphene Brillouin zone �BZ� �“trigonal warping”12�
needs to be taken into account. It was shown that a third-
order Taylor expansion of the energy dispersion relation

around K point leads to an equation for Eg,13 which depends
on the chirality of the tube �generalized expression was given
later14�. The modified dispersion relation reflects the fact that
the corresponding transitions for “mod 1” and “mod 2” nano-
tubes lie on different sides of the K point. Subsequently, an
empirical parameter � was introduced in the �-electron
model to account for the curvature effect which not only
changes the overlap between � orbitals but also causes mix-
ing between � and � orbitals.15 For a �n ,0� SWNT, the en-
ergy band gap was given by

Eg =
2�

�3
t0�1

n
+ �− 1�n mod 3�

2�

�3

1

n2� �1�

with t0=2.53 eV, �=0.43,16 or �=1 /12 for the �-electron
model.13,15 Tight-binding predictions formed the basis for
identification of chirality and interpretation of experimental
results17 to show that SWNTs follow two distinct trends de-
pending on �n−m�mod 3=1 or 2. Later, a first-principles
generalized gradient approximation �GGA� study16 reported
significant deviations from the simple tight-binding predic-
tions for tubes with radius smaller than 3.5 Å �n=7,8� but
confirmed results for larger n. The band gap for n mod 3
=2 class is found to be higher than the other class.16

D’yachkov and Hermann18 used a linear augmented cylindri-
cal wave method to show that Eg in SWNTs is oscillatory in
nature depending on n mod 3=1 or 2 but reached opposite
conclusions for the two classes; the n mod 3=1 class has
larger gaps than the n mod 3=2. Fantini et al.19,20 deter-
mined the electronic transition energies of several nanotubes
with different chiralities based on resonant Raman spectros-
copy and confirmed the existence of two classes of SWNTs,
depending on �2n+m�mod 3 equal to 1 or 2, respectively.
Telg et al.21,22 also reported the evidence of two classes of
SWNTs based on �n−m�mod 3; they interpreted their results
based on three nearest-neighbor tight-binding model.23 A
comprehensive first-principles study of 40 different small
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diameter SWNTs,24 employing density-functional theory
�DFT� within the local-density approximation �LDA�, con-
firmed the deviation from a simple 1 /d behavior and ex-
plained the existence of two families of semiconducting
SWNTs: the mod 2 gaps are larger than the mod 1 gaps for
two consecutive n values. Later, however, a first-principles
plane-wave density-functional calculation reported again a
monotonic decrease in Eg for SWNTs �Ref. 25� from �10,0�
to �17,0�.

Using two-photon excitation spectroscopy26 and combin-
ing electron diffraction with Rayleigh scattering,27 it has
been confirmed that Eg �and higher-order transition energies�
is consistently lower for mod 1 than for mod 2 tubes. Under
strain, this chirality dependence of the transitions leads to
opposite shifts in band gap energies for these two families.28

For zigzag SWNTs, the tight-binding result for the change in
band gap �E is simply �3t0�1+��� �positive for n mod 3
=1 and negative for n mod 3=2�. � is the uniaxial strain and
� is the Poisson ratio which takes into account homogeneous
deformation perpendicular to the strain axis. For the com-
monly used values t0=2.7 eV and �=0.2, one obtains �E as
�97 meV per 1% strain. Experimental measurements which
employ an atomic force microscope �AFM� seem to be
consistent29,30 with the �100 meV range per 1% strain. Us-
ing Rayleigh scattering spectroscopy, however, the strain-
induced shifts were found to be almost a factor of 2
smaller.31 These are important issues central to the correct
assignment of chirality indices to SWNTs. It is therefore
timely to study the gap behavior and strain-induced changes
using a self-consistent and systematic approach.

The rest of the paper is organized as follows. A brief
description of the theoretical approach is described in Sec. II.
Results and discussions are presented in Sec. III followed by
a short summary in Sec. IV.

II. METHOD

Our calculations are performed using the periodic density-
functional method, which involves GGA for the exchange
and correlation within the framework of the Perdew-Wang
91 formalism.32,33 We have used the Vienna ab initio Simu-
lation Package �VASP� �Ref. 34� to carry out the calculations.
To construct the �n ,0� nanotube structure within the periodic
approach, we placed the unit cell of the SWNT in a tetrago-
nal lattice with the tube parallel to the z axis. The lattice
parameter was varied from 4.25 to 4.28 Å to find the opti-
mal z translation based on minimal total energy. The other
two sides of the unit cell are chosen in such a way that the
interwall distance between the tubes for different diameter is
kept fixed at �11 Å. This large interwall separation is used
to ensure negligible interaction between the nanotube and its
images along x and y directions. We have used 1	1	7
k-point mesh �Monkhorst-Pack� for the determination of
equilibrium geometry of SWNT. A stringent force criterion
of 0.01 eV /Å is used for individual atoms during the full
structural relaxation. The convergence threshold for energy
is taken to be 10−6 eV. We have tested the convergence for
Eg with respect to the choice of k-point sampling; for ex-
ample, in the case of �8,0� SWNT, a 1	1	1 k point �one

irreducible k point� predicts a 0.7242 eV band gap, a 1	1
	7 k-point �four irreducible k points� mesh yielded 0.591
eV for the Eg, which is changed to 0.5904 eV with 1	1
	11 k-point mesh �seven irreducible k points�. Considering
the excellent convergence obtained with higher k-point sam-
pling, one can clearly conclude that at least four irreducible k
points are required to obtain accurate picture of the energy
band gap and equilibrium structure. The plane-wave cutoff is
taken to be 286.74 eV and kept fixed for all SWNT with
different diameters.

In a simple tight-binding model, the changes in band gap
and higher-order transition energies can be determined from
quantized slices of the two-dimensional �2D� graphene band
structure and the K-point shift due to strain. The change in
band gap �E induced by uniaxial strain � is given by28

�E = sgn�2p + 1�3t0�1 + ��cos�3
�� . �2�

The factors p=0 �metallic� and �1 �semiconducting� satisfy
p=n−m−3q, with q being an integer and �n ,m� character-
izes the SWNT. Homogeneous deformation perpendicular to
the strain axis is taken into account in this model by the
Poisson ratio �. For zigzag SWNTs �m=0, 
=0�, �E is
simply �3t0�1+��� �positive for n mod 3=1 and negative
for n mod 3=2�. To describe shifts in higher-order transition
energies �Ekk, Eq. �2� is multiplied by �−1�k+1 �successive
lines originate from lines on alternating sides of the K
point31�.

Combining Eqs. �1� and �2� one obtains the strain-
dependent transition energies �the band gap is E11���; terms
of O�n2� have been neglected for the sake of simplicity�

E11��� = Eg + �E = 2t0��/��3n� − �− 1�n mod 33/2�1 + ���� ,

�3a�

E22��� = 2t0�2�/��3n� + �− 1�n mod 33/2�1 + ���� . �3b�

A semiconductor-metal transition �E11=0� occurs for
�met= �−1�n mod 32� / �3�3n�1+��� which gives 5% strain for
a �20,0� SWNT with �=0.2. The maximum gap is obtained
when E11��max�=E22��max� or �max=−�−1�n mod 3� / �3�3n�1
+���. Therefore, 	�met	=2	�max	 and the maximum gap
is E11��max�=3 /2Eg. It also follows that �met�2n ,0�
=�max�n ,0�, e.g., the semiconductor-metal transition for a
�20,0� SWNT takes place under the same strain value for
which the �10,0� gap maximum occurs. Later, these tight-
binding results will be compared to self-consistent-field
�SCF� results with full geometry optimization.

III. RESULTS AND DISCUSSIONS

A. Band gaps as a function of diameter

Figure 1 shows the results for Kohn-Sham direct energy
band gap as a function of their diameter, indicating deviation
from a simple monotonic decrease in Eg with increase in
diameter of the SWNT. Up to �8,0�, the strong curvature
distortion changes the simple picture derived from the prop-
erties of graphene. From �10,0� onward, the trend in Eg can
be explained surprisingly well with the simple relation de-
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rived from the tight-binding calculation that accounts for the
trigonal shape of the equienergy lines around the K point and
models �-� mixing with the empirical parameter �=0.43 in
Eq. �1�. Due to trigonal warping, Eq. �1� predicts that the
energy band gap for mod 1 class is reduced �kvic is the point
in the projected BZ of graphene closest to K point which
determines the gap in SWNT and approaches K from the M
point outside the first BZ�. In the case of mod 2 class the gap
becomes larger �kvic approaches K from � point�. Our first-
principles calculations confirm that the �n ,0� SWNTs fall
into two classes depending upon n mod 3=1 �smaller band
gaps� or 2 �larger gaps�. The amplitude of the gap oscilla-
tions, enhanced through the curvature induced �-� mixing,
decreases from �10,0� to �17,0�. From n=19 onward, corre-
sponding to a radius larger than �15 Å, the gap roughly
follows the 1 /d behavior with only a minor deviation pre-
dicted by the �-electron model with �=1 /12 in Eq. �1�.
Within each class of SWNT, the Eg decreases monotonically
with increasing diameter beyond the initial curvature domi-
nated region �n�10�.

Figure 2 shows the energy-band structures for three rep-
resentative SWNTs. The energy bands around the Fermi en-
ergy are doubly degenerate and primarily � and �� in nature
for the valence and conduction bands, respectively. We ana-

lyzed the band decomposed charge density at the � point for
the three SWNTs �Fig. 3�. It can be seen from the Fig. 3 that
the valence bands in �13,0� and �16,0� show a bonding char-
acter with electron cloud smeared between atoms along the
circumference �more evident in �16,0��. The conduction
bands in this class �n mod 3=1� show antibonding character
with electron clouds highly localized around the atoms. In
the case of �14,0�, i.e., n mod 3=2 class shows an opposite
trend of localized electron cloud in the valence band and
smeared in the conduction band. It is also evident that �13,0�
exhibits more �−� mixing than the other two SWNTs of
larger diameters as predicted from Eq. �1�.

Table I summarizes our results together with the values
reported in the literature for Eg in SWNT. The first row rep-
resents Eg calculated in the current study. Our GGA gaps are
in excellent agreement with the LDA gaps reported in Ref.
24, as one could expect for carbon-based materials. They are
also in good agreement with the values reported for �7,0� to
�14,0� of Ref. 16; LDA result for �8,0� of Ref. 35; and �10,0�
and �11,0� of Refs. 13 and 15. Also, our results match quali-
tatively for �10,0� to �14,0� of Ref. 2. We believe that the
absence of band gap oscillation reported in Ref. 25 is a con-
sequence of nonoptimal z translation leading to spurious
strains in SWNTs. It should be noted that the trend in Eg
obtained from a crude single k-point sampling of the BZ
during structural optimization will yield persistent oscilla-
tions of Eg from n=11 onward, as observed in Ref. 18. The
discrepancy between the current results and the tight-binding
values reported for �7,0� and �8,0� �Refs. 2, 15, and 35� can
be attributed to the strong curvature effect that is not in-
cluded in these tight-binding models. The first experiments
that probed the relationship between electronic properties
and structure of SWNTs reported band gap values whose
distribution could be fitted with the simple tight-binding ex-
pression Eg=2t0aCC /d with t0=2.45 �Ref. 8� and 2.7 eV,9

respectively, and d as the tube diameter. Selected experimen-
tal values corresponding to our calculation are given in Table
I. The agreement is reasonable and within the uncertainty of
precisely determining the diameter and corresponding chiral-
ity angle, i.e., �n ,m� of a given SWNT.

B. Strain-induced changes in the band gaps

We have varied the lattice parameter along the axis of the
SWNTs from 4.25 to 4.28 Å to find the influence of longi-
tudinal strain on Eg �Fig. 4�. As predicted by the tight-
binding Eqs. �3a� and �3b�, Eg for the two different classes of
SWNTs is found to exhibit opposite trends; the band gap for

FIG. 1. �Color online� Energy band gap �Eg� as a function of the
diameter for �n ,0� zigzag nanotubes; the line with solid circles
shows the predictions from DFT �GGA� and the line with solid
squares represents predictions from a tight-binding model with a
parameter �=0.43.

FIG. 2. Energy-band structure of three representative SWNTs
�13,0�, �14,0�, and �16,0�. The dotted line at zero represents the
Fermi energy level.

FIG. 3. �Color online� Band decomposed charge density at the �
point for �13,0�, �14,0�, and �16,0�.
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n mod 3=1 increases with an increase in the z-axis transla-
tion. For n mod 3=2, the band gap is found to decrease with
the increase in z translation. Again this reinforces the exis-
tence of two distinct classes of SWNTs. It also suggests that
an optimal z translation is crucial for obtaining correct fea-
ture of the Eg.

For �10,0� and �20,0� tubes, the potential surface and band
gap changes were explored up to approximately �6% strain
or compression. For each strain value, full internal geometry
relaxation was allowed. The resulting potential curve for the
�20,0� carbon nanotube is shown in Fig. 5�a�. It can be seen
that a parabola is an excellent fit for the SCF energies with
only small deviations occurring for strains larger than
4–5 %, i.e., Hooke’s law is fulfilled over a large range of
strains. The potential minimum ��=0%� is found for z
=4.27 Å. From the second derivative of the “SCF” �20,0�
potential curve �Fig. 5�a��, we calculate Young’s modulus of

1035 GPa �973 GPa for the “quadratic fit” curve which uses
only points up to 4% strain for the parabolic least square fit�
assuming a wall thickness of 3.4 Å �twice the van der Waals
radius of C�. Virtual identical results are obtained for the
�10,0� SWNT �1037 and 979 GPa, respectively�. These cal-
culated values are in excellent agreement with the experi-
mental results just published:36 an average Young’s modulus
of 0.97�0.16 TPa was reported for the SWNTs investi-
gated, independent of the nanotube chiral index.

The calculated SCF band gap changes for the �10,0� and
�20,0� SWNTs are shown in Fig. 5�b�. They exhibit qualita-
tively the behavior predicted from Eqs. �2� and �3�, i.e.,
changes in optical transition energies determined from quan-
tized slices of the 2D graphene structure and from the
K-point shift due to strain. These tight-binding transition en-
ergies are shown for n=20 �Fig. 5�b�� using t0=2.7 eV and
�=0.2. The �20,0� SCF slope d�E /d� is ��115�10� meV;
for the �10,0� SWNT, d�E /d� is 113 meV for −4%���
+4%. Both are about 10% larger than the tight-binding re-
sult of �97 meV per 1% strain. The semiconductor-metal
transition for the �20,0� SWNT is found for �=3.7% �z
=4.43 Å� at the strain value for which the �10,0� gap maxi-
mum is found, consistent with the tight-binding relation
�met�2n ,0�=�max�n ,0� discussed before. The �20,0� gap
reaches its maximum for �=−1.6% �z=4.20 Å� and then
decreases. In our calculation, it reaches zero again for �=
−7.5% �z=3.95 Å; outside of Fig. 5�.

The V shape of the band gap change can be understood
easily from the zone-folding picture. In Fig. 6, the dotted
lines around the K point of the graphene BZ represent two of
the available states consistent with the boundary condition
for a �n ,0� zigzag nanotube with n mod 3=1 �Fig. 6�a�� and
n mod 3=2 �Fig. 6�b��. They are spaced by a distance d

TABLE I. Energy band gap �Eg� as a function of n of zigzag SWNTs. The first row under Ab initio
presents the data from the current study obtained from DFT GGA.

n 7 8 10 11 13 14 16 17

Ab initio

Eg 0.19 0.59 0.78 0.92 0.65 0.72 0.56 0.56

Ref. 24 0.21 0.59 0.77 0.93 0.64 0.72 0.54 0.58

Ref. 25 0.48 0.57 0.91 0.77 0.72 0.63 0.61 0.53

Ref. 16 0.24 0.64 0.75 0.94 0.63 0.74

Ref. 35 0.09 0.62

Tight binding

Ref. 15 1.11 1.33 0.87 0.96

Ref. 35 1.04 1.19

Ref. 2 1 1.22 0.86 0.89 0.69 0.7

Expt.

Ref. 8 0.9�0.05a 0.8�0.05a

0.75�0.05a

Ref. 9 0.5�0.05b 0.55�0.05bc

aData obtained from Fig. 3�c� of Ref. 8.
bData obtained from Table 1 of Ref. 9.
cReported chiral angle of 25° and accuracy of �1°; 30° corresponds to a zigzag tube.

FIG. 4. �Color online� Energy band gap �Eg� as a function of the
lattice parameter along the z axis of the SWNT.
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=2� /na0. The distance dG to K which defines the band gap
is 1 /3d for E11 and 2 /3d for E22, respectively. Under axial
strain, the K point moves toward �. Therefore, for
n mod 3=1, K moves away from E11. This increases dG and
therefore the gap until the midpoint between the two lines
and the gap maximum is reached ��=3.7% for n=10�. If the
strain is further increased, the gap then becomes defined by

E22 which has now the shorter distance to K. For n mod 3
=2, K moves toward E11; the distance to K and therefore the
gap decrease under strain until the K point reaches E11 and
the SWNT becomes metallic ��=3.7% for n=20�. Under
compression, the K point moves away from E11; the distance
to E11 and hence the gap increase until the midpoint is
reached ��=−1.6%�, after which the gap becomes defined by
E22 and decreases under further compression until it reaches
zero once more when K reaches E22. For the �20,0� SWNT
the symmetry of the V shape as predicted in the tight-binding
model is well confirmed by our ab initio SCF calculations.
For �10,0� the rate of decrease in the gap after the maximum
at 3.7% is smaller than the rate of increase for strains below
3.7%. Curvature effects probably distort the symmetry.

In a recent paper, Huang et al.31 used Rayleigh scattering
spectroscopy to identify the nanotube crystal structure as
well as to measure the effect of strain on the optical transi-
tion energies in SWNTs. The axial strain on the SWNT is
calculated from the differential thermal expansion between
steel and the Si substrate onto which thin gold metal layers
“glue” the nanotubes. The strain-induced shifts were found
to be almost a factor of 2 smaller than that predicted by Eq.
�2�. The authors showed that inclusion of internal sublattice
relaxation in the tight-binding model yields a prefactor of
12� / �1+6�� to Eq. �2� which is 0.57 if a previously esti-
mated � value of 0.066 is used, which would explain their
experimentally observed shifts not only qualitatively but also
quantitatively. The corrected shift for zigzag chains with this
prefactor is �55 meV �instead of �97 meV� per 1% strain.
Earlier experimental measurements on band gap changes in
SWNTs employing an AFM �Refs. 29 and 30� which does
not require attached electrodes are consistent with the
�100 meV range per 1% strain, confirmed by our ab initio
calculations with full geometry relaxation. An analysis of the
geometry of the converged optimized SCF structures did not
show any difference in deformation between the two trian-
gular sublattices; under strain, the equilateral triangles with
a0=�3dCC become elongated in the same way. For example,
under 3.75% strain, the long arm of the isosceles triangle is
2.531 Å and the base a0 is shortened from 2.456 to 2.442 Å
by a factor of 0.9943 which corresponds to a Poisson ratio �
of 0.152 to obtain an equivalent shrinking with the tight-
binding factor �1−���. The optical transitions measured in
Ref. 31 are excitonic in nature. It will need further investi-
gations whether excitonic transitions behave differently un-
der strain than band transitions to explain the difference in
shifts in transition energies.

IV. SUMMARY AND CONCLUSIONS

In summary, we have used ab initio gradient corrected
density-functional computations to investigate the diameter
dependence of Eg and strain-induced changes in Eg of
SWNTs. The SCF results with full internal geometry relax-
ation unambiguously confirm the existence of two classes of
SWNT based on n mod 3 equal to 1 �smaller Eg and strain-
induced gap increase� or 2 �larger Eg and strain-induced gap
decrease�. For �10,0� and �20,0� tubes, the potential surface
and band gap changes are explored up to approximately

(b)

(a)

FIG. 5. �Color online� �a� Deformation potential �relative SCF
binding energy� as a function of strain for the �20,0� SWNT �black
squares�. A parabola �red line online� is an excellent fit for the SCF
energies with only small deviations occurring for strains larger than
5%, i.e., Hooke’s law is fulfilled over a large range of strains. The
minimum of the potential ��=0� is found for z=4.27 Å. �b� Cal-
culated SCF band gap changes for the �10,0� and �20,0� SWNTs as
a function of strain. For �20,0� SWNT, the SCF gap change is com-
pared to the tight-binding changes predicted by Eq. �2�. The SCF
slope d�E /d� for �20,0� SWNT is ��115�10� meV, about 10%
larger than the tight-binding result of �97 meV per 1% strain.

FIG. 6. Two of the available states consistent with the boundary
condition for a �n ,0� zigzag nanotube with �a� n mod 3=1 and �b�
n mod 3=2 in the zone-folding picture around the K point of the
graphene Brillouin zone.
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�6% strain or compression. The calculated band gap
changes are ��115�10� meV per 1% strain, positive for
the mod 1, and negative for the mod 2 family, about 10%
larger than the tight-binding result of �97 meV. Young’s
modulus of �1000 GPa is calculated. The semiconductor-
metal transition for a �20,0� carbon nanotube is found for
�=3.7%. For n
10, i.e., for diameters larger than �8 Å �at
smaller diameters, strong curvature effects dominate the Eg
behavior�, the simple tight-binding model explains quite well

the results of the fully self-consistent calculations if the
trigonal shape of the equienergy lines around the K point is
properly taken into account.
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